
Porting the .NET Compact Framework to Symbian 
Phones – A Feasibility Assessment 

 
Alain Gefflaut, Friedrich van Megen, Frank Siegemund, Robert Sugar  

 
European Microsoft Innovation Center 

Ritterstr. 23 

D-52072 Aachen, Germany  

{alaingef|fmegen|franksie|rsugar}@microsoft.com 
 

 

ABSTRACT 
As a result of the increasing availability and processing capacity offered by portable devices, it is important for 
software providers to offer mobile services that seamlessly interoperate with business applications. However, 
currently there is still a considerable technology gap between building .NET applications on PC-like systems and 
programming mobile services on mid-range portable devices, a large number of which run the Symbian operating 
system. As Microsoft has built its .NET Compact Framework Common Language Runtime (CLR) for high-end 
mobile devices, it would be desirable to bring a reasonable subset of this technology to mid-range smartphone 
devices as well. Such a platform for executing .NET applications on Symbian-enabled smartphones has then the 
potential (1) to considerably facilitate the migration of .NET applications to portable devices and (2) to increase 
the interoperability between software running on stationary systems and mobile services. In this paper, we present 
an initial feasibility assessment for porting the .NET Compact Framework to Symbian smartphones, and analyze 
how the unique characteristics of the Symbian operating system affect the portability of the .NET Compact 
Framework. Based on our experiences in porting parts of the .NET Compact Framework to Symbian, we 
illustrate code portability between different platforms and provide a preliminary performance analysis of the 
.NET Compact Framework compared to Java. 

Keywords 
.Net Compact Framework – Symbian – Mobile Services – Smartphones – Software Migration. 

 

1. INTRODUCTION 
During the last two decades, mobile phones have 
become almost ubiquitous. As a result of this 
development, it is increasingly important for software 
providers to offer mobile services that seamlessly 
interoperate with their business applications in order 
to improve customer satisfaction and service 
availability. The .NET Framework has been a popular 
platform for creating such applications and services 
both on stationary computers and Windows CE-based 
PDAs. However, a large number of today’s 

smartphones are currently based on the Symbian 
operating system, for which applications are either 
developed in Symbian C++ or Java. According to a 
recent study [Gar04], 80% of all smartphones 
shipped in the 3rd quarter of 2004 were Symbian 
phones. Hence, for the next couple of years Symbian 
smartphones are likely to remain an important 
platform for implementing mobile services. 

As a consequence, it would be beneficial if .NET 
applications could also be executed on Symbian-
enabled devices. .NET developers could then reuse 
their code for mobile services instead of 
reimplementing their applications from the ground up 
using C++ or Java. Reimplementation can be 
especially cumbersome since commonly used 
CLR/.NET features may not be present in different 
programming models (e.g. floating point support is 
absent in some J2ME profiles, SOAP Web Services 
support may be missing, XML and graphics 
programming model might differ). These issues mean 
that direct code reuse is not possible, which results in 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  
 

.NET Technologies’2005 conference  proceedings,  
ISBN 7/,75832,/0,0 
Copyright UNION Agency – Science Press, Plzen, Czech Republic 



increased costs and is likely to introduce new 
program errors. Having a Common Language 
Runtime (CLR) running on Symbian smartphones 
also implies that developers could implement 
applications for this platform using the same 
programming environment and tools offered for the 
.NET Framework. We would like to argue that such 
an approach has the potential to considerably simplify 
the migration of .NET applications to mobile devices 
and makes it easier for software developers to design 
mobile services that interoperate with stationary 
.NET applications. 

In this paper, we investigate whether it is feasible to 
port the .NET Compact Framework to Symbian, and 
report on our preliminary experiences in porting parts 
of the .NET Compact Framework to this platform. 
The paper also contains an analysis of specific 
characteristics of Symbian and describes how the 
internals of the Symbian operating system affect the 
portability of the .NET Compact Framework. 
Furthermore, we provide a preliminary performance 
analysis of executing applications for Symbian 
smartphones by means of the Common Language 
Runtime (CLR). 

The remainder of this paper is structured as follows: 
The following section summarizes related work. Sect. 
3 provides an overview of the .NET Compact 
Framework architecture. Sect. 4 reports on our 
experiences in porting parts of the .NET Compact 
Framework to Symbian phones and shows how we 
dealt with the specific demands of the Symbian 
operating system. In Sect. 5 we evaluate our 
implementation in comparison to Java. Sect. 6 gives 
an outlook on future work, while Sect. 7 concludes 
the paper.  

2. RELATED WORK 
The number of programming languages targeting the 
Common Language Infrastructure (CLI) has been 
steadily increasing over the years. Besides the variety 
of currently supported programming languages, 
however, CLI run-time technologies have also 
become increasingly interesting for simplifying the 
development process across different platforms and 
operating systems. Examples for this development are 
Microsoft’s Rotor and 3rd party Mono and DotGNU 
implementations of the CLI [Rotor,Mono,DotGNU]. 
The last years have therefore shown a shift from 
using CLI technologies for language integration on a 
single platform to improving the development of 
applications across different platforms and operating 
systems. As the CLI has been accepted as an 
international standard, the development into this 
direction of cross-platform interoperability of CLI 
languages is likely to persist.  

While there are significant projects that aim at 
supporting .NET on operating systems such as Unix 
and MacOS, the major difference in hosting the CLI 
on the Symbian operating system is that the latter is 
explicitly targeting resource-restricted mobile 
devices. Constraints regarding the amount of 
available memory, computational resources, and 
restrictions in the functionality provided by the 
operating system pose therefore new demands on the 
portability of the .NET Framework. Because of these 
constraints, this paper focuses on the .NET Compact 
Framework [NETCF] – which itself was designed for 
mobile devices and first implemented to run on 
Windows CE. Because of this, it already considers 
some of the typical constraints of mobile platforms.  

Most Symbian smartphones are shipped with a Java 
Virtual Machine (JVM) already installed on the 
phone (J2ME MIDP, the Java 2 Platform Micro 
Edition Mobile Information Device Platform targets 
resource-restricted mobile devices such as mobile 
phones). A .NET Compact Framework 
implementation for smartphones should therefore be 
at least comparable to Java implementations with 
respect to provided functionality and resource 
consumption. Besides this fact, there are however 
major differences between Java and .NET that make 
a direct comparison difficult: (1) Java byte code is 
often interpreted while the CLR primarily uses Just-
in-Time (JIT) compilation. (2) There are international 
standards for the CLI and C#, while there is no such 
standard for Java (there is a Java Community 
Process, though). (3) .NET supports many 
programming languages – with J# also a flavour of 
Java. This can make direct comparison difficult 
because this advantage can imply architectural 
decisions affecting the performance of the CLI. (4) 
The .NET Compact Framework comes with 
functionality that is not natively supported by J2ME 
MIDP. However, there are a range of publicly 
available add-ons and class libraries that support 
much of this functionality also on this Java platform 
[J2MEWeb].  

Rashid et al. [RTCE04] compare the performance of 
native Symbian code with interpreted Java 
applications, and Raghavan et al. [RSL04] reports on 
a model-based performance evaluation of 
applications on mobile devices. In the scope of our 
work, test suites provided by IBM 
[IBMBenchmarks], covering basic features such as 
method calls, thread creation, and data access, were 
used to carry out performance comparisons.  

There are several papers (e.g., [Opera] and [Helix]) 
dealing with some of the obstacles that arise when 
porting applications to the Symbian operating system. 
Some of the described approaches are also applicable 



in the context of our work and helped us find a 
direction for our project. 

3. ARCHITECTURE OVERVIEW 
Fig. 1 gives an overview of the .NET Compact 
Framework architecture and its underlying 
components. As can be seen, the major constituents 
of this general architecture are (1) the actual 
hardware of the mobile device, (2) the operating 
system that provides access to this hardware, (3) the 
.NET Compact Framework CLR, which maps the 
instructions of a (4) .NET application onto 
instructions for the operating system and the 
underlying hardware.  

 

Figure 1: Overview of the .NET Compact 
Framework Architecture 

In the following, we will shortly describe these 
individual components before we present our 
experiences in porting parts of the .NET Compact 
Framework to Symbian. 

Hardware Constraints 
A crucial aspect when trying to target a different 
computing platform for .NET is to be aware of the 
computational and functional restrictions of the 
underlying hardware. 

The Symbian Web site currently (February 2005) 
lists 31 different Symbian OS phones, of which 13 
are distributed by Nokia, 7 were built by Fujitsu for 
NTT DoCoMo’s FOMA network, 3 are from Sony 
Ericsson, and the others come from companies such 
as Siemens and Motorola. For 21 of these 31 phones, 
for which more detailed information could be found, 
we looked more closely at the technical 
specifications.  

All of the investigated phones were built around 
ARM processors or variants such as the OMAP 1510 
from Texas Instruments, which itself is based on an 

ARM architecture. The processor speed varied from 
104 MHz for the ARM4T processor to 220 MHz for 
an ARM5 CPU. As an average, most phones are 
operated at processing speeds of up to around 150 
MHz. Regarding display capabilities, approximately 
50% of the investigated Symbian smartphones have a 
screen resolution of 176x208 and the others a 
resolution of 208x320. An exception is the Nokia 
9290 Communicator with a screen resolution of 
640x200. This relatively large screen, however, is 
only used in the PDA mode of the device. 

All of the smartphones we compared with each other 
supported Java, and most new phones come with Java 
MIDP 2.0 support. Furthermore, Bluetooth has 
become a wireless communication standard that is 
implemented by virtually all Symbian smartphones. 
In some of the new phones Bluetooth is even 
preferred over infrared; these phones are not 
equipped with an infrared port. This is important 
because the .NET Compact Framework provides 
special classes facilitating networking and 
communication over infrared links. In a port of the 
Compact Framework to Symbian-enabled devices, it 
therefore seems reasonable to focus more on 
Bluetooth than infrared as the standard interface for 
short-range communications. 

The most striking difference when comparing 
Symbian smartphones is in the amount of memory 
integrated into the devices. While some Nokia phones 
such as the Nokia N-gage or the Nokia 7650 have 
only about 4 MB of internal memory to store photos 
and messages, newer models such as the Nokia 6630 
come with 10 MB of memory integrated (only about 
6 MB of which are free to store programs or photos); 
the Nokia 7710 has up to 90 MB of internal memory 
[MobileReview]. With respect to non-volatile 
memory, most phones offer the possibility to insert 
multimedia cards (MMC) in order to increase storage 
capabilities. Furthermore, the trend towards more 
sophisticated digital cameras integrated into 
smartphones will increase the demand for non-
volatile memory. As a consequence, it will not be the 
limiting factor when porting the .NET Compact 
Framework to Symbian phones. A more pressing 
problem is the amount of RAM available on 
smartphones. According to [MobileReview], the 
amount of volatile memory available on the Nokia N-
Gage, the Nokia 7610, and the new Nokia 6630 is a 
mere 379 kB, 1403 kB, and 8758 kB, respectively. 

Tab. 1 compares typical hardware features of 
Symbian smartphones with those of a Compaq iPAQ 
PocketPC – a relatively old iPAQ model on which 
the .NET Compact Framework, however, 
successfully runs in a Windows CE based OS (newer 
Pocket PC’s which also run the .NET Compact 

Operating System 
(Symbian) 

Hardware 
(Processor, RAM/ROM, Bluetooth, etc.) 

.NET Compact Framework Application 

.NET Compact Framework CLR 

Class Libraries 

Execution Engine 

Platform Adaptation Layer 



Framework have significantly greater resources). As 
we can see, the most relevant physical difference 
between the iPAQ and the smartphones is the amount 
of memory integrated into the devices. Following an 
exploratory approach, we tried to assess the memory 
demands of a .NET Compact Framework for 
smartphones by porting parts of the framework to the 
Symbian platform (cf. Sect. 5). Considering the other 
hardware characteristics both platforms are somewhat 
similar, so that none of the hardware constraints 
found on smartphones should make it impossible to 
port the .NET Compact Framework to this platform. 

Table 1: Typical hardware characteristics of 
Symbian smartphones compared to that of an 

iPAQ H3650 

 iPAQ H3650 Smartphones 

OS Windows Symbian 

Processor 206 MHz 
Intel StrongARM 

up to 220 MHz 
ARM architecture 

Memory 32 MB RAM 
16 MB Flash 

typ. <<10 MB RAM 
typ. < 10 MB Flash 

Display 240x320 
touch screen 

176x208 or 208x320 
typ. no touch screen 

Connect IrDA, Bluetooth Bluetooth, IrDA  

Operating System 
The second layer in our overall architecture (cf. Fig. 
1) is made up of the operating system, in our case the 
Symbian OS. In many respects does the Symbian OS 
considerably differ from Windows CE, which has 
been the standard platform for hosting the .NET 
Compact Framework CLR implementation. These 
differences affect such elementary features as 
multitasking, error handling, file access, and 
networking. They have therefore a significant impact 
on our goal to port the .NET Compact Framework.  

Here are some of the Symbian characteristics that so 
far caused most of the problems in our project (for a 
more detailed description of these issues, please refer 
to Sect. 4): 

• A C++ dialect that redefines basic language 
structures 

• No writable global and writable static variables 
allowed in DLLs 

• Extensively used client/server model that, for 
example, implies constraints for accessing file 
and networking functions 

• Event-driven programming model with a focus 
on non-preemptive multitasking 

• Symbian’s error handling and cleanup model 

• Concepts from the Unix/Windows world such as 
environment variables as well as several file and 
networking functions are missing 

CLR Architecture Overview 
The .NET Compact Framework CLR is made up of 
the following main components: (1) class libraries, 
(2) execution engine, and (3) platform adaptation 
layer. 

The goal of the .NET Compact Framework class 
libraries is to provide a basic set of classes, 
interfaces, and value types that constitute the 
foundation for developing applications in .NET. For 
example, support for integers, boolean values or 
strings, functionality for performing I/O, classes for 
handling exceptions, and methods for collecting 
information about loaded classes are all included in 
the class libraries of the .NET Compact Framework.  

The execution engine is the core component of the 
CLR – it provides the fundamental services necessary 
for carrying out managed code. While the execution 
engine consists of a large number of individual 
components, some of its most important parts are: (1) 
a just-in-time (JIT) compiler (or alternatively an 
interpreter), (2) a garbage collector, and (3) a class 
and module loader. The decision whether to use a JIT 
compiler or to immediately carry out generated 
instructions in an interpreter depends on the resource 
constraints of a given platform. Our preliminary port 
is based on a JIT compiler, not an interpreter. 

Because the design of the .NET Compact Framework 
anticipated operating system portability, access to 
core operating services occurs through a PAL layer. 
The main responsibility of the platform adaptation 
layer (PAL) is to map calls from the execution engine 
to functions provided by the underlying host 
operating system. In other words, the PAL serves as 
the main mediator between the operating system 
(Symbian OS in our case) and the CLR. As a result of 
the architectural design of the .NET Framework, the 
PAL is the core component that needs to be 
reimplemented when porting the .NET Compact 
Framework to Symbian OS. To illustrate the 
responsibility of the PAL, let us consider the example 
of a simple Web request. Using .NET class libraries, 
the code for retrieving a Web page in C# could look 
like this:  

    WebRequest req; 
    WebResponse resp; 
    
 4: req = WebRequest.Create( 
      “http://www.microsoft.com”); 
 5: resp = req.GetResponse(); 

 

Classes such as WebRequest and WebResponse 
belong to System.Net and are therefore part of the 



class libraries provided by the .NET Compact 
Framework. The method calls in lines 4 and 5 of the 
above code result internally in a number of function 
calls to the underlying operating system. First, the 
URL “http://www.microsoft.com” must be internally 
resolved into a corresponding IP address. Afterwards, 
a timer is created with a callback function that is 
executed when the Web page is not retrieved in a 
certain time frame. Finally, a TCP socket must be 
created and configured that is used to send a request 
to and retrieve data from the remote Web server. The 
implementation of the class libraries in the .NET 
framework thereby assumes the existence of certain 
hooks for handling timers and dealing with sockets on 
the operating system layer. The PAL implements 
these function hooks based on the capabilities of the 
underlying operating system. In case of Windows CE, 
these mappings to function calls of the operating 
system are often straightforward. However, with 
Symbian it can be much more complicated to find 
appropriate mechanisms to implement the desired 
semantics.  

4. PORTING THE .NET COMPACT 
FRAMEWORK 
In this section, we describe our port of selected 
components of the .NET Compact Framework to 
Symbian-enabled mobile devices. Again, we would 
like to point out that our work focuses on evaluating 
whether it is feasible to port the .NET Compact 
Framework to Symbian phones. As a result, simple 
solutions were often preferred over more complex 
approaches in order to get a simple version of the 
Framework working as soon as possible. 

In this section, we attempt to analyze the 
characteristics of the Symbian operating system that 
caused most of the problems in our project, and 
propose solutions for dealing with these issues. 

Current Status 
The preliminary port presented in this paper is based 
on the Microsoft .NET Compact Framework 
implementation version 1 for Windows CE. 
Currently, it is possible to execute basic console-
based .NET applications on two Series 60 phones 
that are based on the Symbian OS: Phone A (OS v6.1 
, 3 MB available memory, and a 104 MHz processor) 
and Phone B (OS v8.0a, 10MB of available memory, 
and a 220 MHz processor). Furthermore, we support 
file access and simple networking. To achieve that, 
work has not only been done on several Platform 
Adaptation Layer (PAL) modules such as threading, 
event handling, console output, file access, and 
networking, but also on the surrounding components 
that are used to load .NET DLLs and to start .NET 
applications.   

C++ Dialect 
The flavor of C++ used to implement native Symbian 
applications caused several problems in our project. 
In particular, Symbian C++ introduces some peculiar 
language features and programming models that were 
partly introduced because of the limited device 
capabilities of Symbian smartphones and partly due 
to historical reasons [Nok04]. Important issues are: 
(1) different standard data types, (2) a missing libc, 
(3) a special exception handling mechanism, and (4) 
a different memory management model. 

First, simple types such as int or unsigned 
long are not recommended by the Symbian 
Software Development Kit (SDK), so types such as 
TInt and TUInt32 had to be used instead. The 
STL (Standard Template Library) is also not 
supported due to size limitations. 

Second, as a libc is not supported by Symbian, a 
basic implementation had to be attached to our 
project containing memory management (like 
memcmp) or C-type string manipulation functions 
(such as strlen). 

Third, the GNU C++ implementation of exception 
handling was not mature enough at the design time of 
EPOC (the old name of Symbian), thus the designers 
employed a more lightweight approach to error 
handling – the “trap harness” mechanism. A function 
called User::Leave() corresponds to the throw 
directive, while the TRAP and TRAPD macros are 
called instead of catch. Exception objects were also 
replaced by simple error codes. 

Furthermore, as mobile phones are switched on for 
long periods of time, the ability to reclaim unused 
heap cells was crucial during the design of Symbian. 
Therefore, a mechanism called “two-phase-
construction” is used during object creation, and a 
“cleanup stack” structure makes sure that every 
object created on the heap is destroyed after it has 
been used.  

Writable Global and Writable Static 
Variables in DLLs 
The Symbian operating system was built with 
memory-constraint devices in mind. Therefore, it tries 
to avoid all unnecessary allocations or wastage of 
main memory. To prevent allocation of memory for 
writable static data in DLLs, which would have to be 
allocated for each application, and to enable 
eXecution In Place (XIP), DLLs that are stored in 
ROM are not copied to RAM. As a consequence, the 
programming environment does not support writable 
static or global data because the segment containing 
these values in the DLL is not writable.  

If this requirement is not a major issue when writing 
new applications, it becomes a major problem when 



porting applications that have been designed to run 
on operating systems supporting writable static data. 
This is the case for the original Microsoft .NET 
Compact Framework, which usually runs on top of 
Windows class operating systems. Two strategies can 
be envisaged to solve this problem. First, rewriting 
the libraries was ruled out as a viable solution since 
the number of writable static data was too large to 
enable a manual rewrite of the libraries. The second 
strategy, which is the one we followed as a way to get 
a test version of the .NET Framework working as 
soon as possible, consists in loading in RAM all 
DLLs used by the .NET Compact Framework 
application. To reach this goal, we designed and 
wrote a specific loader. Starting the Framework is 
then realized by calling the loader. The loader is in 
charge of downloading in RAM the image of the 
.NET Compact Framework binary, as well as all 
libraries that it needs (including the writable data 
section). The loader also performs the necessary 
relocation in order to prepare the execution. Once 
relocation is done, the loader identifies the entry 
point defined in the .NET Compact Framework 
binary and jumps to its location. Although this 
solution works, it is far from optimal since it can 
result in a possibly high memory footprint. While this 
is not a problem in our feasibility assessment, this 
issue would have to be addressed in a real, complete 
port of the .NET Compact Framework to Symbian.  

Starting .NET Applications 
When a .NET application – which is usually 
generated using a development environment and a 
compiler on a Windows-based PC system – is to be 
executed on a Symbian phone, it must be assigned to 
our .NET Compact Framework implementation for 
execution. As .NET compilers generate files in the 
standard .NET portable executable file format, it is 
possible to distinguish any .NET application from 
native Symbian applications. Luckily, the Symbian 
OS provides the concept of so called Recognizers, 
which are used to assign certain file types to selected 
applications. For example, HTML files can be 
associated with a Web browser, PDF files with an 
Acrobat reader, etc. As this association can be based 
on more that just the file extension and allows us to 
analyze the file to be executed, we use a special 
Recognizer for starting .NET applications. 

Dealing with Symbian’s Client/Server 
Framework 
The Symbian OS introduces a range of servers to deal 
with system resources on behalf of different clients. 
Examples for such servers are the file server, the 
socket server, and the window server; servers are 
usually located in a different process than the clients 
that want to access their services. The problem with 

Symbian’s client/server framework from the 
perspective of the .NET Compact Framework is that 
only the client thread that creates resources for 
interacting with a server can use and destroy them. 
This has some implications for a port of the .NET 
Framework, and especially the Platform Adaptation 
Layer (PAL). Imagine that there is a .NET 
application consisting of two threads that both want 
to access a file. In this scenario, the PAL would be 
responsible for mapping the file access to 
corresponding operating system functions. For 
example, there would be a function like 
PALFile_Open() that sends a request to the 
Symbian file server to open a file. However, since 
both .NET threads – which are both mapped to 
Symbian threads in our implementation – might want 
to open a file, this is not possible because only the 
client thread that created the connection to the file 
server can do that. To solve this problem, we 
introduced a mediator thread that handles all 
communication with the file server. Symbian OS 
threads that represent threads in .NET then interact 
with this additional thread in order to access files. For 
the PAL implementation, this means that 
PALFile_Open() does not interact with the file 
server directly, but instead issues a request to the 
intermediary thread communicating with the file 
server. A similar mechanism is deployed to handle 
networking and console access. 

Dealing with Symbian’s Focus on 
Cooperative Multitasking 
In the desktop domain, pre-emptive multitasking 
replaced cooperative multitasking years ago when 
resources became cheaper and PC-like systems much 
more computationally powerful. Furthermore, using 
pre-emptive multitasking for different computations 
that need to be carried out concurrently is much 
easier from a programmer’s point of view than having 
to deal with the burden to split a long-running task 
into subtasks in order to keep up responsiveness. 
However, although the Symbian operating system 
supports pre-emptive multitasking, switching between 
different pre-emptive threads is considered very 
expensive and programmers are strongly encouraged 
to use cooperative multitasking instead [Nok04, 
Har03]. To support programmers in handling 
cooperative multitasking, Symbian introduced the 
concept of Active Objects as a programming 
paradigm. Together with a so-called Active 
Scheduler, Active Objects are supposed to facilitate 
the programming of non-preemptive concurrent tasks. 

However, cooperative multitasking using Active 
Objects has still the disadvantage that if there is a 
long-running calculation, it only will give control to 
another task if it is finished. As this might severely 



reduce the responsiveness of a user interface, for 
example, books on Symbian programming [Har03, 
Nok04] strongly suggests manually splitting long-
running tasks into smaller subtasks that can faster 
pass on control to other subtasks, thereby improving 
the overall responsiveness of the system. This, 
however, does not map well with the notion of 
threads in .NET because threads in .NET are 
generally viewed as being preemptively scheduled. 
To deal with this issue in a port of the .NET Compact 
Framework there are several theoretical solutions:  

(1) If there is a thread in .NET, it is possible to 
generate a pre-emptively scheduled thread in the 
Symbian operating system and accept the effect on 
system performance this does imply. (2) When the 
execution engine requests a new thread to be created 
for a thread in a .NET application, a new Active 
Object could be created that handles the associated 
task. However, this would mean that we would need a 
mechanism to automatically find a location in the 
code where this active object can pass on control to a 
different task. Finding a place where this can be done 
requires at least the help from the JIT compiler or 
special statements in the .NET code that would have 
to be used by a programmer. (3) Another important 
issue with threads is that Symbian’s client/server 
model (see previous subsection) forces us to 
introduce preemptively scheduled threads on the 
operating system layer to sequentialize access to 
servers (the file server, for example). In order to 
reduce the number of low-level Symbian threads, it is 
possible to use a single thread for all different 
servers. The downside of this, however, is that a 
.NET thread that wants to output a string on the 
console might need to wait for a different .NET 
thread that wants to do file access. Whether this can 
be accepted depends mainly on the concrete .NET 
application. In the current state of our port, .NET 
threads are directly mapped to pre-emptively 
scheduled threads on the Symbian operating system 
layer. 

5. EVALUATION 
The purpose of this section is to estimate the 
performance of a .NET Compact Framework 
implementation for Symbian smartphones in 
comparison to other runtime environments where 
intermediate code is executed by a just-in-time 
compiler or an interpreter. To achieve this goal, we 
compare the time necessary to execute .NET code on 
our platform with the time needed to execute Java 
code on a Symbian smartphone. As it would be too 
complex to compare and difficult to interpret the 
runtime characteristics of complete applications 
written for .NET and Java – due to the different 
algorithms and optimizations Java and .NET runtimes 
might use – our approach is instead based on micro-

benchmarking. Micro-benchmarks are simple 
programs (usually loops) targeting a single 
functionality such as memory allocation or thread 
synchronization. Because of the simplicity of the 
underlying programs, porting the benchmarks to both 
Java MIDP and .NET is relatively simple. This also 
assures that a comparison based on these benchmarks 
stays fair. 

In order to carry out the evaluation, we chose a suite 
of micro-benchmarks originally written by IBM to 
measure the performance of simple Java operations in 
a standard Java Virtual Machine (JVM) environment 
[IBMBenchmarks]. These benchmarks originally 
targeted the desktop versions of Java and thus are 
using APIs that are not available on a Symbian 
smartphone. Therefore, we selected relevant tests 
from this benchmarking suite and adapted them such 
that they could be executed by the JVMs installed on 
our Symbian smartphones. As a result, benchmarks 
for the reflection interface of Java were omitted as 
well as tests targeting file access functions (file 
access is not supported on the smartphone JVMs used 
in our tests). Additionally, we also had to drop any 
benchmark using Java functionality not available to 
.NET applications. 

The other major change in the benchmarks dealt with 
timing issues. Instead of dynamically calculating the 
number of iterations of a test, we hard-coded the 
number of iterations for each benchmark based on the 
duration of a test. This was done because it simplifies 
porting of the test framework to C#, and because it 
ensures that all tests are carried out the same amount 
of times on different devices. In general, faster tests 
run more often than more time-consuming tests. For 
the above reasons, test results measured with the 
selected benchmark suite on another hardware 
platform cannot be directly compared to the results 
presented in this paper.  

Porting the Benchmarks to C# 
In a second step, we ported the selected set of micro-
benchmarks to the .NET Compact Framework using 
C#. Because Java is quite similar to C#, porting the 
micro-benchmarks required mainly small syntactic 
modifications. For example, the C# language keeps a 
different set of reserved identifiers, thus, variables 
named internal or object had to be renamed. 
Besides syntactic modifications, a few discrepancies 
between Java and C# forced us to modify the code. 

Unlike Java, for example, C# does not support the 
synchronized tag for methods or classes. For 
tests that required synchronized method calls, we 
removed the synchronized tag and added a 
lock(this) as the first statement of the method. 
The lock statement in C# is used to acquire the 
monitor associated to an instance of a class, thereby 



preventing anybody else from calling a method of this 
object. As a result, this statement emulates the 
behavior of the synchronized tag of Java. 

Another, slightly more complex modification in the 
benchmarks was necessary because there is no simple 
alternative to the Thread.Join() statement in the 
.NET Compact Framework. This is a difference w.r.t. 
the original .NET Framework, but in the Compact 
Framework, it is difficult to ask a thread to wait for 
the completion of another thread. To handle this 
problem, we rewrote the original tests such that 
explicitly generated events were used for signaling.  

Micro-Benchmarks Description 
The first micro-benchmark in our evaluation (cf. Tab. 
2) measures memory read latency by reading the 
elements of an array. The second micro-benchmark 
measures the efficiency of calling a single method. 
The test distinguishes between calling a plain and a 
synchronized method. The third micro-benchmark 
deals with thread creation. This test sequentially 
creates threads and waits for them to start. Since the 
Symbian documentation in many places warns against 
the overhead involved when creating threads we were 
especially curious how well our implementation 
behaves compared to the Java thread implementation. 
The fourth micro-benchmark measures the time 
necessary to create new objects and the overhead 
caused by inheritance. In particular, it tests the 
creation of small objects derived over two 
generations compared to the creation of large objects 
that also inherit from a baseclass over two 
generations. This test also illustrates the performance 
of the memory subsystem and to some extend of the 
garbage collector. The fifth micro-benchmark 
measures the performance of comparing strings. The 
last three tests concentrate on measuring the 
performance of general array handling operations 
(e.g., initialization and copying). Both Java and C# 
provide support for a system-level array copy 
function a programmer should use for performance 
reasons. The CopyArray test therefore has two 
versions, one using the system-level function, the 
other using a naive copy of the array using a loop. 
While this might result in a performance penalty for a 
runtime that interprets code, we do not expect a big 
performance hit when code is generated by a JIT 
compiler. Similarly, the InitArray and 
SumArray micro-benchmarks provide two versions, 
one using a simple loop, the other using unrolling to 
limit the cost of the loop overhead. 

Results Analysis 
Tab. 2 shows the results obtained by executing the 
described tests on different platforms and execution 
environments. For the analysis of the results, the 

reader should keep in mind that the .NET tests for 
Symbian smartphones were carried out on a 
preliminary port of the .NET Compact Framework. 

The first column of Tab. 2 shows the name of the 
micro-benchmark. The second lists the parameters 
used to run the micro-benchmark (starting with the 
number of iterations). Columns three and four show 
the results, in milliseconds, of the Java micro-
benchmarks when executing them on the JVMs that 
were already installed on the smartphones used for 
our experiments (cf. Sect. 4). The next three columns 
show the results when carrying out the benchmarks in 
a .NET Compact Framework runtime. As can be seen 
in the table, we have used our port on Phone A and 
Phone B (cf Sect. 4) for the tests and compared these 
results with a standard .NET Compact Framework 
running on a regular PDA (a T-Mobile MDA II 
running PocketPC 2003 has been used for this 
experiment). Although not directly comparable, the 
results obtained with the PDA are useful to find out 
whether performance differences between Java and 
.NET are a problem of our PAL implementation or 
shared between .NET runtimes on different 
platforms. 

As a general result, the speed of our initial port of the 
.NET Compact Framework is comparable with the 
corresponding Java implementation on Phone B and 
sometimes significantly faster on Phone A. A likely 
reason for this is that the JVM on Phone A seems to 
use an interpreter, while Phone B comes with a JIT. 
In two occasions, however, our port of the .NET 
Compact Framework is much slower than the Java 
runtime on the same device. These correspond to 
tests calling synchronizes methods (we are 4.8 times 
slower on Phone A) and spawning threads (we are 52 
times slower on Phone A). 

In case of synchronized methods, the Java 
implementation of a synchronized method call takes 
twice as long as calling a method that is not 
synchronized. It is remarkable, however, that this is 
much faster than the time needed in our port, where 
calling locked method is 157 times slower than an 
unsynchronized method call on Phone A. We 
expected calls to a synchronized method to be 
slightly slower compared to the unsynchronized 
version. Furthermore, since there is no real 
concurrency involved (as only one thread in this test 
calls the functions), we did not expect a major 
difference. Our first assumption was that our 
implementation of the corresponding PAL functions 
were responsible for the poor performance.  



Table 2: Time for running benchmarks (in ms) 
Java .NET Compact Framework 

Test Parameter 
Phone A Phone B Phone A Phone B PDA 

1. MemReadLatency #1000000, 4, 512 1578 141 219 110 122 

  #1000000, 8, 256 1547 125 219 109 121 

2. Method Calling #1000000, internal, sync 4094 579 19703 32390 12843 

  #1000000, internal, nosync 2719 203 125 62 330 

  #1000000, external, nosync 2703 219 172 79 394 

3. Spawn Threads #1000, <> 422 1437 21937 15062 2579 

4. AllObjectConstruct #10000, small, assign, 3 219 31 63 94 61 

 #10000, large, assign, 3 1125 250 ENOMEM 219 103 

5. StringCompare #10000, 128 2500 328 531 250 217 

  #10000, 512 9187 1157 2047 984 854 

6. CopyArray #10000, 1024, simple 3890 328 250 375 389 

  #10000, 1024, system 203 250 531 687 69 

7. InitArray #10000, 1024, unrolled 1547 250 31 234 166 

  #10000, 1024, simple 3438 235 16 250 271 

8. SumArray #1000, 512,simple 187 16 531 0 15 

  #1000, 512,unrolled 94 16 2047 0 12 

 

Comparing this to the tests running on the PDA, 
however, revealed that the real reason might 
partially reside in the implementation of the 
Compact Framework itself. This is because even on 
the PDA locked code runs 39 times slower than a 
function not using the lock statement (cf. previous 
subsection). Spawning a thread is also considerably 
slower in our Symbian .NET Compact Framework 
implementation than in the Java implementation. 

Right now, we are not sure if this is due to a bad 
implementation in our PAL layer or to the use of 
different synchronization primitives in our 
adaptations of the micro-benchmarks. The result for 
the same test on the PDA seems to indicate that it is 
a problem of our implementation on Symbian, and 
we are currently in the process of identifying the 
underlying problem.  

As can be seen in Tab. 2, one of the tests 
(AllObjectConstruct with large objects) 
failed with an out-of-memory error on Phone A. A 
possible explanation for this problem is that the 
garbage collector was not able to reclaim memory 
as quickly as the test requested new objects to be 
created. To confirm this theory, we modified the 
test to manually call the garbage collector during 
the test. This solved the problem, but did not allow 
us to report useful results since the reported time to 
execute the benchmark included the time to run the 
garbage collector. Solving this issue is a work item 
for us that we will investigate in the scope of our 
project. 

6. FUTURE WORK 
Security 
So far, we have not explicitly dealt with security in 
our project, but there are a number of security 
features that could be addressed in the future. These 
features could be divided into managed code 
security and the .NET Framework security. 

Managed code security generally follows the 
guidelines of the .NET Compact Framework, which 
currently allows full access to resources through the 
P/Invoke mechanism (which allows for calling 
functions of the underlying OS). Later releases of 
the .NET Compact Framework will support security 
policies, custom permission sets, imperative and 
declarative security checks [MSDNSecurity]. 

Our .NET Compact Framework runtime itself is a 
Symbian application, thus special attention needs to 
be placed on testing the implementation against 
possible exploits – especially the PAL layer, which 
has access to core OS features. 

Porting the GUI 
Symbian allows access to the GUI on several layers. 
The OS itself provides a common graphics server 
that provides the main window, basic drawing 
functions, and event handling mechanisms. Direct 
screen access is also possible. On top of that there 
are several phone-specific graphic libraries, the 
most common being the AVKON library built for 
Series 60 phones. 



Three distinct approaches were identified that could 
be followed in implementing the GUI: 

1. Using basic drawing primitives to adapt an 
existing portable graphics library to Symbian 
smartphones. This approach would be the 
easiest to implement, but it would probably 
result in a high memory footprint and a slow 
performance of the UI subsystem. The look-
and-feel would also be different from native 
Symbian applications. 

2. Mapping .NET user interface calls to AVKON. 
This would be the most convenient solution, 
but there are significant differences between 
the two APIs. Major problems include the 
creation of resource files that the Symbian GUI 
framework relies on and several threading 
issues that prevent multiple threads to access 
the same control or have a parent-child window 
relationship.  

3. Providing access for the AVKON GUI: This 
would place the burden of dealing with a 
device-specific library on the .NET developer, 
but proxy objects and helper functions could 
assist her during the process. 

7. CONCLUSION 
This paper evaluated the feasibility of porting the 
.NET Compact Framework to Symbian 
smartphones. Our analysis shows that the specifics 
of the Symbian OS and the resource constraints of 
today’s smartphones make porting difficult but not 
impossible. Carrying out a serious port of the .NET 
framework, however, would require a considerable 
amount of manpower in order to appropriately react 
to the constraints of the Symbian platform. Our 
comparison with Java showed that .NET programs 
executed on smartphones would have similar 
performance characteristics. This is a very 
promising result and speaks in favour of the overall 
design of the .NET Compact Framework for 
resource-constraint devices. 

8. ACKNOWLEDGMENTS 
We would like to thank Gerd Rausch for helping us 
with the implementation. We thank Wolfgang 
Manousek, Mark Gilbert, and Ivo Salmre for all the 
competent comments regarding the .NET Compact 
Framework and Symbian, and their continuous 
support throughout this project. 

REFERENCES 
[DotGNU] The DotGNU project, 

http://www.dotgnu.org. 

[Gar04] Gartner. Market Share: Smartphones, 
Worldwide, 3Q04, 
http://www3.gartner.com/DisplayDocument?doc
_cd=125555, December 2004. 

[Har03] Harrison, R. Symbian OS C++ for Mobile 
Phones, Wiley & Sons, August 2003. 

[Helix] Wright, G. The Symbian porting project on 
HelixCommunity.org, 
https://symbian.helixcommunity.org/. 

[IBMBenchmarks] The jMocha Microbenchmark 
Framework and Suite for Java, http://www-
124.ibm.com/developerworks/oss/jmocha/index.
html. 

[J2MEWeb] Sun Microsystems: Java 2 Platform, 
Micro Edition (J2ME) Web Services, Technical 
White Paper, July 2004. 

[MobileReview] Mobile Review Web site, 
http://www.mobile-review.com. 

[Mono] The Mono project, http://www.mono-
project.com/. 

[MSDNSecurity] Microsoft Developers Network: 
Security Goals for the .NET Compact 
Framework,http://msdn.microsoft.com/library/e
n-us/dv_evtuv/html/etconSecurityGoalsForNET
CompactFramework.asp. 

[NETCF] The Microsoft .NET Compact 
Framework, http://msdn.microsoft.com/ 
smartclient/understanding/netcf/. 

[Nok04] Edwards, L.; Barker, R. Developing Series 
60 Applications, A Guide for Symbian OS C++ 
Developers, Addison-Wesley, 2004. 

[Opera] Porting Opera to EPOC, 
http://www.symbian.com/developer/techlib/pape
rs/khopera/opera%5Fkeithhollis.htm. 

[Rotor] Stutz, D. The Microsoft Shared Source CLI 
Implementation, Microsoft Corporation, Online 
MSDN article, http://msdn.microsoft.com/ 
library/en-us/dndotnet/html/mssharsourcecli.asp, 
March 2002. 

[RSL04] Raghavan, G.; Salomaki A.; Lencevicius, 
R. Model Based Estimation and Verification of 
Mobile Device Performance, Fourth ACM 
International Conference on Embedded 
Software (EMSOFT ’04), Pisa, Italy, pp. 34-43, 
September 2004. 

[RTCE04] Rashid, O.; Thompson, R.; Coulton, P.; 
Edwards, R. A Comparative Study of Mobile 
Application Development in Symbian and J2ME 
using Example of a Live Football Results 
Service Operating over GPRS. IEEE 
International Symposium on Consumer 
Electronics, Reading, UK, pp. 203-207, 
September 2004. 

 


